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ABSTRACT
Origami is increasingly popular in engineering for its ability

to deploy to a large area from a compact volume. In addition to
its circular nature and fixed central polygon, the origami Flasher
pattern has several advantages that make it a desirable candi-
date for many deployable systems, including space applications
such as LiDAR telescopes, solar arrays, or reflectarray anten-
nas. Some complications with the Flasher pattern that limit its
application are panel interference due to multiple high degree
vertices and its inability to rigidly fold. This work builds on the
Cross-Frame design by Varela et al., which was implemented as a
thickness accommodation technique, as well as a solution for the
interference issues. Modifications of the Cross-Frame design for
the Flasher origami pattern are presented, which address inter-
ference and the rigid-foldability issues within the Flasher pattern.
Three frame designs, the modified cross, the diamond, and the
Z design, are presented and trade-offs for each design regarding
stiffness, either localized or generalized, are explored. Meth-
ods for optimizing each frame design to accommodate for rigid-
foldability are introduced and algorithms and constraints for this
topological optimization are discussed. Results of optimizations
for stiffness and length are shown, and further modifications for
future research are discussed.

Keywords: Origami, Flasher pattern, Optimization, Rigid-
foldable

NOMENCLATURE
Analytical Model
𝑘 Rotational beam stiffness [Nm/rad]
𝐿 Beam length [m]
𝐸 Modulus of elasticity [Pa]
𝐼 Moment of inertia [kgm2]
𝑞 Distance from edge of beam to point moment [m]
𝜃 Angle between the beam element and the point moment

vector [rad]

†Joint first authors
∗Corresponding author: katievarela@byu.net

Optimization Model
𝜒 Ratio of stiffnesses along bisection and non-bisection

lines, respectively
𝑒 Associated with edge points being optimized for each

panel
𝑚 Associated with middle points being optimized for each

panel
𝑐 Associated with corner points for each panel
𝑙𝑖𝑛𝑒𝑛 Associated with edge lines for each panel
𝐺 Associated with opposite edge of a gore
𝜏 Minimum distance from an path end point to a panel

vertex
L Total length of beam segments

(a) (b) (c)

FIGURE 1: EXAMPLE FLASHER CONFIGURATION. A) STOWED.
B) MID-DEPLOYMENT. C) DEPLOYED.

1. INTRODUCTION
Folded mechanical systems based on origami patterns have

the ability to change their shape during their folding or unfolding
process. This ability has often been used to compactly stow large
arrays [1], though origami-based designs have recently been used
for many additional engineering applications [1–3]. Principles
of origami have been used to inspire deployable structures used
in aerospace design, including a self-stiffening and retractable
deployable space array [4], a foldable antenna [5–8], and a de-
ployable Flasher-patterned solar array [9, 10]. This work will
address space-related applications of origami, but the principles
here are not limited to those usages.
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FIGURE 2: THE FLASHER CONFIGURATION SELECTED FOR THE OPTIMIZATION WITH PARAMETERS m = 4, r = 2, h = 2, dr = 0.2.
NOTE THAT MOUNTAIN FOLDS ARE SHOWN AS SOLID LINES AND VALLEY FOLDS ARE SHOWN AS DASHED LINES. BISECTION LINES
ARE SHOWN IN LIGHT GRAY.

Many space applications, such as solar arrays, reflectarray
antennas, and LiDAR telescopes, require large, flat surface areas.
Therefore, these arrays need to be able to easily transform from
a compact volume into a relatively large deployed area. Because
origami patterns tend to be compact when stowed, they can be
well suited for space applications.

An origami pattern that has been of interest for space and
other applications is called the Flasher [10–13]. An example of
Flasher deployment is shown in Fig. 1. This pattern’s key benefit
is its ability to be compact when stowed, then open to have an
array with a large area-to-volume ratio. Other benefits of the
Flasher include that it is generally circular in nature, extensible
by adding more rings, and has a central panel that can be used for
anchoring. The Flasher is not a flat-folding pattern, but instead
wraps around itself as it is stowed, achieving a flat state only when
fully deployed. The Flasher is also not rigid-foldable.

Tachi describes rigid-foldable origami (or rigid origami)
as “piecewise linear origami that is continuously transformable
without the deformation of each facet” [14]. In other words, if a
panel is not rigid-foldable, the panel itself must deform or bend
during the transition between stowed and deployed, instead of
having all of the motion in the folds [14–16].

The Flasher pattern was adapted to create a solar array, us-
ing a membrane hinge approach that reduced the rigid-foldability
complications [9, 13]. Additional work has been done to accom-
modate thickness in the Flasher for other space-related applica-
tions [17, 18], because using materials with any finite thickness
affects the pattern’s ability to fold [19].

This work modifies structural topology of Flasher panels
to help address the complications due to rigid-foldability. The
model was proposed by Varela et al. [18], called the Cross-Frame,

and is used for both thickness accommodation and structural
support for the Flasher array. That initial work puts the frames
through the center of the panels, preventing interference issues
by keeping material away from the vertices. This paper considers
topological features to reduce issues with rigid-foldability by
modifying the geometry (similarly implementing the principle
that link shape does not matter for kinematic motion), but does
not address thickness accommodation directly.

Our objective in this work is to create a framework to opti-
mize the structural support for the Flasher panels so that they can
deflect as needed, while maintaining the stiffness of the array in
the deployed state. In other words, to create a localized region of
stiffness in the panel, so the panel can be flexible in one direction,
but stiff overall. In this work, the compliance of the panel geom-
etry achieves a slight deflection along the bisection line (shown
in Fig. 2), which allows the pattern to fold with semi-rigidity,
while maintaining the original number of panels, fold lines, and
degrees of freedom as the origami pattern.

2. BACKGROUND

The Flasher has four parameters that describe its configura-
tion: 𝑚, 𝑟 , ℎ, and 𝑑𝑟 , which are described in detail by Zirbel et
al. [9]. For this optimization, the Flasher selected has parameter
values of 𝑚 = 4, 𝑟 = 2, ℎ = 2, and 𝑑𝑟 = 0.2, as shown in Fig. 2.
These parameters where chosen because they represent a Flasher
with a typical deployed area to stowed volume ratio. Because
𝑚 = 4, the Flasher has four repeating sections, called gores, that
have rotational symmetry.

2 Copyright © 2024 by ASME



(a)

(b)

FIGURE 3: EXAMPLE CROSS-FRAME FLASHER CONFIGURATION.
A) WITH PANELS FOR REFERENCE. NOTE THAT THE CROSS-
FRAME INTERSECTS EACH FRAME EDGE LINE AT ITS MIDPOINT.
B) WITH NO PANELS.

2.1 Rigid-Foldability
Because the Flasher is not rigid-foldable, it is multi-stable.

Whether folding in paper or in thickened materials, there is an
unstable equilibrium point that the Flasher goes through in the
process of stowed-to-deployed (or vice versa). This creates a
“snap”, or a high potential energy intermediate state that must be
overcome during the deployment process.

Previous work to accommodate for this issue involves bisect-
ing all of the four-sided panels into triangles [20], which makes
the Flasher rigid-foldable and avoids the snap issue, but increases
the complexity of the pattern by significantly increasing the total
number of panels and required hinges.

Another method proposed uses kirigami, which is similar
to origami, but involves cutting the material instead of folding
it [8]. Transitioning an origami pattern to a kirigami pattern
can introduce additional degrees of freedom which can lead to

challenges in system deployment and panel alignment.
To avoid these complications, this work has developed a

program to optimize the shape of each Flasher panel’s structure
to reduce the stiffness along the bisection line outlined by Lang
in [20] making it compliant along the bisection direction, while
maximizing stiffness in the pattern in other directions.

2.2 Compliant Mechanisms
Origami-based design has become a branch of compliant

mechanism research, inspiring an alternative solution to tradi-
tional design methods by using flexible members to replace tra-
ditional hinges, joints, and other moving parts [3]. Compliant
mechanisms are often modeled as pseudo-rigid bodies that have
torsion springs with variable stiffness, 𝑘 , depending on their ma-
terial, geometry, and end conditions. The support structures pro-
posed for the Flasher have stiffness that is inversely proportional
to the length of the beams.

By modeling these support segments as simply supported
beams, they can be treated as springs in parallel. Therefore, the
equivalent stiffness of the panel diagonals is the sum of the indi-
vidual stiffnesses that touch the respective diagonals. According
to this assumption, to minimize stiffness along the bisection line
it is ideal to have fewer beams in that direction, and more beams
in the directions that are intended to be stiff.

3. METHODS
3.1 Overview

The design approach behind the Cross-Frame Flasher seeks
to take a panel made up of a regular polygon with three or four
sides and shift the structure away from the vertices to avoid com-
plications during thickness accommodation and folding. Figure
3 shows this approach applied to a full Flasher pattern and Fig.
4 shows a single panel from that Flasher pattern. Because these
panels need to be able to connect to each other, it is necessary to
have at least one hinge along each panel edge. The work done
in [18] applied this methodology to an entire Flasher by placing
the Cross-Frame at the center of each panel polygon, or in other
words, having the hinge locations at the midpoints of each edge,
shown in Fig. 4.

This work sought to build on the original Cross-Frame by
optimizing the placement of the elements within each panel us-
ing three different methods, called “the optimized cross”, “the
diamond”, and “the Z frame”, shown in Figs. 5, 6, and 7, respec-
tively. These three designs were derived from the condition that
each panel must connect to each adjacent panel by at least one
point, and as such all contain one point along each panel edge,
although they differ in how they connect the edge points.

The model used here initially sought to minimize the total
length of the frame, which was used as a surrogate for maximizing
the overall stiffness due to the inverse relationship between length
and stiffness. From this criterion, the optimized cross design
was created by selecting points for the hinge locations and the
middle point that would minimize each beam’s length. Because
of this modification, a major difference between this design and
the original Cross-Frame design is that cross elements are not
constrained to be at the midpoint of the panel edges. An example
of the modified cross design is shown in Fig. 5.
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FIGURE 4: ILLUSTRATION OF INITIAL CROSS-FRAME DESIGN.
NOTE THAT FRAME STRUCTURE IS SHOWN IN GREEN, PANEL
OUTLINES ARE SHOWN IN BLUE, AND PANEL CORNERS ARE
SHOWN IN RED. THE DOTS AROUND THE EDGE INDICATE HINGE
PLACEMENT.

FIGURE 5: MODIFIED CROSS DESIGN, SHOWN OPTIMIZED TO
MINIMIZE LENGTH.

However, because the Flasher design requires bisections on
quadrilateral panels in order to be rigid-foldable, our objective
was not to maximize the stiffness of every panel, but rather to
minimize the stiffness of the frame along the bisection axis and
stiffen it in the axis opposite to the bisection. These diagonals
are predefined by the pattern, or the panel boundaries themselves,
and do not change with the shape of the support structure. This
constraint led to the development of two different designs which
include no middle point and connect the edge points directly to
each other.

The first is referred to as the “diamond frame” design, in
which the frame makes a diamond shape in connecting to all
edge points, shown in Fig. 6. This design was derived from basic
compliant mechanism principles - long members flex more than
short members (with the same material, cross-section, applied
force/moment, etc.) [3], and therefore, it uses short beams in the
directions that require stiffness and longer beams in the directions
that require flexibility. The diamond design has an analytical
advantage of maintaining an overall stiffness for each panel while

FIGURE 6: DIAMOND FRAME DESIGN, SHOWN OPTIMIZED FOR
STIFFNESS. BISECTION LINE IS SHOWN IN DASHED MAGENTA.

FIGURE 7: Z-FRAME DESIGN, SHOWN OPTIMIZED FOR STIFF-
NESS. BISECTION LINE IS SHOWN IN DASHED MAGENTA.

allowing for reduced stiffness along one axis.
The second design without a central connection point is re-

ferred to as the “Z frame” design (see Fig. 7), which functions
according to the same principle as the diamond, but uses only
three members to connect all four sides. The theory behind this
design is that it minimizes the frame structure required to connect
each panel, though this could make it less stiff overall. It can be
noted that there are four possible Z orientations to connect the
edge points of each panel, and the orientation chosen reflects the
minimization of stiffness in the desired direction to aid in folding.

Each of these three panel frame designs were used and com-
pared in the optimization of the full Flasher to compare the advan-
tages and disadvantages of each. Once the optimization of each
panel was set up, adjacent panels could be optimized together by
having the panels share common edge points. This approach was
used to optimize an entire gore of the Flasher for each frame de-
sign described, as shown in Figs. 9, 10, and 11. The optimization
of a single gore of the Flasher was able to be used as a surrogate
for the entire Flasher by adding an additional constraint to keep
points on the edge of the gore aligned with their corresponding
points on the opposite edge.
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FIGURE 8: MODEL USED FOR EACH OF THE BEAMS WITHIN THE
OPTIMIZED DESIGNS.

Once the optimization was found to be working correctly for
each method with a full Flasher, various stiffness models were an-
alyzed for their potential implementation, and a relative stiffness
model was chosen. To accomplish the goal of achieving stiffness
in all directions except along the bisection line, the optimization
was able to vary the x and y positions of all points along the
sides of each panel, subject to the polygon boundaries, the panel
edge lines, minimum distance constraints between points, and
symmetry between gore edges.

3.2 Analytical Stiffness Model
Calculating the stiffness of these structures is complicated by

the variety of configurations that can be utilized, and the boundary
conditions depend somewhat on the selected configuration. For
this work, a simply supported beam with a point moment on the
beam span was selected as the basic model, as shown in Fig. 8.

It was assumed that the magnitude of the moment caused by
the panel bending would be equivalent on each beam, and that the
vector component that is parallel to the beam (causing torsion)
is negligible compared to the bending component. With these
assumptions and a fixed cross-section and material, the stiffness
equation 𝑘 = 𝑀/𝜃 is the general form for stiffness with bending
moments, so the equations for 𝑀 and 𝜃 associated with a simply
supported beam with a point moment at an arbitrary distance were
substituted in, which simplifies to

𝑘𝑞 =
3𝐸𝐼𝐿 sin 𝜃

𝐿2 − 3𝐿𝑞 + 3𝑞2 (1)

where the bending moment component, sin 𝜃, is determined by
the angle that is made between the beam element and the moment
vector. The variable 𝑞 is defined as

𝑞 = 𝑅𝐿 (2)

where 𝑅 is a fraction that describes how far along the beam the
moment is acting, and 𝑅𝜖 [0, 1]. Because of the symmetry, it does
not matter whether 𝑞 is measured from the “left” or the “right”
end of the beam, so 𝑅𝐿 can be substituted for 𝑞, allowing the Eq.
(1) to simplify further, canceling out the 𝐿 in the numerator by
factoring an 𝐿 from each term in the denominator. This factor
also weights the equations to get a maximum stiffness by applying
the moment at the center of the beam, and a minimum by applying
the moment at the edges.

A ratio of the stiffnesses was calculated along the bisection
line versus along the “non-bisection” line, as shown in Eq. (3)

FIGURE 9: CROSS DESIGN OPTIMIZED TO MINIMIZE TOTAL
LENGTH OF FRAME ELEMENTS WHILE VARYING LOCATIONS OF
POINTS ALONG EACH PANEL EDGE AND PANEL MIDDLE.

below. By using a ratio of stiffness, the assumptions of the
beam end conditions, as well as values for modulus of elasticity
and moment of inertia of the beam, will be present in both the
numerator and the denominator and therefore cancel out and not
affect the calculated result. The resulting stiffness ratio, 𝜒, is

𝜒 =
𝑘𝐵𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑘𝑁𝑜𝑛−𝐵𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛
=

𝐿𝑁𝐵 (1 + 3𝑅𝑁𝐵 + 3𝑅2
𝑁𝐵

) sin 𝜃𝐵
𝐿𝐵 (1 + 3𝑅𝐵 + 3𝑅2

𝐵
) sin 𝜃𝑁𝐵

(3)

Eq. (3) will be used as the objective function, which will minimize
the stiffness along the bisection line and maximize the stiffness
along the other diagonal by varying 𝐿, 𝑅, and 𝜃 for both diagonals.

Because the modified cross method yielded segments that do
not intersect with either the bisection or non-bisection lines, the
stiffness calculation ratio described above is not effective. There-
fore, the cross structure shown in Fig. 9 only minimizes length,
and does not have stiffness ratios associated with it. Additionally,
for all three designs, the triangular panels in each gore do not have
bisection lines, so they also were calculated to minimize length,
since they do not need to flex during deployment, and therefore
can have maximum stiffness.

3.3 Optimization Details
The problem formulation used to optimize the frame of a

single panel and a full Flasher gore is given in Table 1, which
minimizes the objective function given in Eq. (3), subject to
constraints 1-6. This same method was used for optimizing the
entire Flasher, with the addition of constraint 7, which keeps
adjacent Flasher gores aligned. Note that constraints 1 and 7 are
equality constraints, while constraints 2 through 6 are inequality
constraints.

To optimize the pattern, initial guesses were selected for each
point using the midpoint of the corresponding panel edge. Ad-
ditionally, for the optimized cross, the initial guess for the center
point was determined from the middle of the panel. It should be
noted that single-panel optimizations using the listed constraints
presented several equivalent local minima when optimizing for
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FIGURE 10: DIAMOND DESIGN OPTIMIZED TO MINIMIZE THE RA-
TIO OF STIFFNESS ACROSS THE BISECTION LINE TO THE STIFF-
NESS ACROSS THE NON-BISECTION LINE, WHILE VARYING LO-
CATIONS OF POINTS ALONG EACH PANEL EDGE. NOTE THAT
THIS IS DONE BY MINIMIZING THE STIFFNESS ACROSS THE BI-
SECTION LINE AND MAXIMIZING THE STIFFNESS ACROSS THE
NON-BISECTION LINE.

length, and as such, it should be acknowledged that the opti-
mization of full Flasher gore represents one of several potential
configurations. To account for this, additional constraints should
be added for thickness accommodation, manufacturing, and gen-
eral feasibility as needed. Because each gore is identical, the
optimization is determined for panels on one gore, with consid-
erations (via constraints) of how each gore would connect to the
next. Note that the gores are staggered as they wrap around the
central polygon, which the optimization also takes into account.

Constraint 1 is used to keep each optimal edge point on its
associated panel edge line. Constraint 2 is used to keep each
optimal middle point (when using the modified cross pattern)
within the bounds of its associated panel.

Constraints 3 through 6 use Euclidean distance to avoid triv-
ial solutions where multiple points are at the same location or
points are at panel vertices. These are necessary to maintain
the benefit of the Cross-Frame design by creating space between
the frame and the panel vertices to avoid interference issues at
each vertex. The parameter “𝜏” is used to define the minimum
allowable distance between points. Constraint 3 compares each

TABLE 1: OPTIMIZATION PROBLEM FORMULATION

minimize 𝜒

by varying (𝑥, 𝑦)𝑒
subject to (𝑥, 𝑦)𝑒 𝜖 𝑙𝑖𝑛𝑒𝑛 (1)

(𝑥, 𝑦)𝑚 𝜖 (𝑥, 𝑦)𝑐 (2)
∥(𝑥, 𝑦)𝑒𝑖 − (𝑥, 𝑦)𝑒𝑗 ∥2 ≥ 𝜏, 𝑓 𝑜𝑟 𝑖 ≠ 𝑗 (3)
∥(𝑥, 𝑦)𝑒 − (𝑥, 𝑦)𝑚∥2 ≥ 𝜏 (4)
∥(𝑥, 𝑦)𝑒 − (𝑥, 𝑦)𝑐 ∥2 ≥ 𝜏 (5)
∥(𝑥, 𝑦)𝑚 − (𝑥, 𝑦)𝑐 ∥2 ≥ 𝜏 (6)
∥(𝑥, 𝑦)𝑒 − (𝑥, 𝑦)𝑐 ∥2 =
____ ∥[(𝑥, 𝑦)𝐺𝑒 − (𝑥, 𝑦)𝐺𝑐 ∥2 (7)

FIGURE 11: Z DESIGN OPTIMIZED TO MINIMIZE THE RATIO OF
STIFFNESS ACROSS THE BISECTION LINE TO THE STIFFNESS
ACROSS THE NON-BISECTION LINE, WHILE VARYING LOCATIONS
OF POINTS ALONG EACH PANEL EDGE. NOTE THAT THIS IS DONE
BY MINIMIZING THE STIFFNESS ACROSS THE BISECTION LINE
AND MAXIMIZING THE STIFFNESS ACROSS THE NON-BISECTION
LINE.

hinge location to every other hinge location, to make sure they
do not find the same optimal position. Although this constraint
recommends that every hinge point be checked for the mini-
mum distance, the speed of the optimization can be significantly
improved by checking only the “nearest neighbors" or adjacent
points. Note that constraint 3 does not check each edge point
against itself. Constraint 4 is applicable only for the modified
cross design, and determines if the distance between the middle
point and the edge points is smaller than 𝜏. Constraints 5 and 6
check if the edge points and middle points (again, only for the
modified cross approach) are far enough away from the corners
of their panel, respectively.

Constraint 7 also uses Euclidean distance (or 2-norm) to
extrapolate the optimization of a single gore out to the entire
Flasher by constraining the optimal points on the edges of the
each gore to be at equal distances from their associated corners;
in other words, this algorithm ensures that the connection points
from gore to gore will align with each other in order to create a
continuous frame.

The optimization algorithm used in this work was the python
SciPy “minimize" package, and the supplementary algorithms
that were created for the constraints are not included in this work
for conciseness.

4. RESULTS
For the diamond and the Z methods, the optimizer was ef-

fectively able to vary 𝐿, 𝑅, and 𝜃 for each of the diagonals,
maximizing 𝐿𝐵, 𝑅𝐵, and sin 𝜃𝑁𝐵 and minimizing 𝐿𝑁𝐵, 𝑅𝑁𝐵,
and sin 𝜃𝐵, as shown in Eq. (3). Observations of the resulting
optimizations demonstrated that the 𝑅 values and the sin 𝜃 values
were driving factors, particularly in the diamond method (see Fig.
10).

Because of the trade-offs with length, angles, number of
beams, etc. described above, the proposed optimization output
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(a) Diamond design. (b) Z design.

FIGURE 12: FULL FLASHER OPTIMIZATION SHOWN OVERLAID WITH ORIGINAL PATTERN.

therefore is analytically feasible. In other words, there is evi-
dence that this framework is a valid method for implementing
compliance into rigid-foldable origami patterns.

The resulting optimized gores for each frame design can be
seen in Figs. 9-11. Note that the bisection lines are shown in red
for Figs. 10 and 11, but not for Fig. 9, because the modified cross
design was not optimized around stiffness.

5. DISCUSSION
5.1 Modified Cross Design

Length minimization was used for the modified cross design.
The results in Fig. 9 brought the cross intersection point as close
to a vertex as possible (considering the constraints), and often had
most of the hinge points surrounding a vertex. For this design,
the results were mostly intuitive, though because all the panels
needed to connect with each other, there are some angles that
were less obvious. Still, this optimization was able to maintain the
space around the vertices, especially around the degree-six vertex
that has the most interference. This method was not modified
for bisection line flexibility, so no conclusions will be drawn
regarding that objective.

The modified cross design, because it does not have an accu-
rate stiffness ratio, is not recommended for addressing the issue
with rigid-foldability. However, a different stiffness calculation
method could be utilized to achieve this objective.

5.2 Diamond Design
Although the single panel optimization yielded a topology

of a rectangular structure, optimizing the full gore of panels led
to much more trapezoidal results for each panel. This optimized

solution with the diamond method was not anticipated, but it
seems effective, because the optimizer emphasized the 𝑅 and
sin 𝜃 terms, instead of focusing on the 𝐿 terms from Eq. (3).
The beams that intersect with the bisection lines therefore aren’t
perpendicular with the bisection line, and their intersection points
are close to the ends of the beam, while the beams that intersect
the non-bisection line are almost perfectly perpendicular, and
intersect near the midpoint of each beam. Even though one of the
beams adding to 𝑘𝑁𝐵 is long (which is typically more flexible),
the optimization determined that it didn’t contribute as much as
the angle and 𝑅 value.

The results of this optimization also remained close to the
vertices, but instead of surrounding the vertices on three sides like
the modified cross method did, it only drew in two of the hinge
points close to the vertices, as shown in Fig. 10. The degree six
vertex does have one hinge point close by, but interference would
still be minimal due to constraints 3-6. The diamond method’s
solution is also nearly symmetrical, which implies a more stable
structure overall.

The stiffness ratios per panel for this method were approx-
imately 10:1, non-bisection to bisection, according to the opti-
mization. Although the results have not been prototyped and
confirmed yet, this technique is a good candidate for achieving a
structure that will accommodate the rigid-foldability issue while
maintaining reasonable stiffness when deployed.

5.3 Z Design
The solution found by the optimizer for a single panel of the

Z design was as expected: the bisection line was only intersected
by one of the support beams, while all three beams intersected
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the non-bisection line, increasing the stiffness in that direction.
Additionally, the beam that touches the bisection line is nearly
parallel to it, minimizing the intersection angle, and the others
are nearly all perpendicular to the other diagonal (see Fig. 11).
The 𝐿 values seem less significant to the optimization than the
angle and the intersection ratio.

The hinge points clustering around the vertices were not
as predictable in this design, as some vertices have only one
hinge point nearby, and others have three. The results were also
not symmetric, which was unanticipated, and in particular, the
geometry close to the degree-six vertex is not intuitive.

The middle segment of the Z is treated similar to a torsion bar,
which helps with flexing, though because it did not take torsion
into consideration, it would likely have an even higher stiffness
ratio (i.e.able to flex even more along the bisection line). With that
considered, the Z design without taking torsion into account had
an average ratio of about to 20:1. This design, therefore, is also
a good candidate for the structure, depending on the flexibility
needed within the panels.

5.4 Summary and Future Work
Using the simply supported beam model, this work was able

to develop designs for the frame of a Flasher origami pattern
that helps address rigid-foldablity complications, allowing for a
variety of panel flexibility needs. Fig. 12 shows a representation
of how a fully optimized Flasher pattern would look for each
design, with an optimized gore rotationally mirrored about the
central polygon, though further experimentation and prototyping
could validate whether this satisfies the rigid-foldability condition
for the full Flasher.

Future work could benefit from using a “mix and match”
approach to the optimization of the Flasher by allowing the opti-
mizer to choose which frame design is used on a panel-by-panel
basis, rather than using the same frame design for every panel.
In this way the optimization could accommodate the different
requirements for each Flasher panel; for example, panels on the
outer edge are larger, and would therefore require more compli-
ance along their bisection lines to fold, as well as requiring more
stiffness along the non-bisection lines to support the Flasher struc-
ture when deployed.

Additional future work recommended would be to validate
the full Flasher optimization results using finite element analysis
such as ANSYS, or other beam models. Prototyping of these
designs is in work at BYU, but has not yet been completed.

6. CONCLUSION
This optimization is meant as a framework to help resolve

rigid-foldable complications with the Flasher pattern, and shows
the feasibility of creating a Flasher structure that has flexible pan-
els. This work demonstrates the feasibility of creating a Flasher
that can withstand the rigid-foldability issues, using either the
diamond or Z designs. This optimization framework may also be
applicable to other rigid-foldable origami patterns.
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