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ABSTRACT
The ability to compactly fold space-based arrays has seen

an increasing demand in the aerospace industry. This work will
review the methods which have been developed by various authors
to create novel origami patterns which can stow compactly and
deploy out to a predictable shape using Hamiltonian Circuits,
discuss techniques for modifying and improving the behavior and
performance of kirigami patterns created using this method, and
then show an example application of this method for creating
novel patterns for a particular use case.
Keywords: Origami, Small Satellites, Deployable, Hamilto-
nian Circuit

NOMENCLATURE
Variables
𝑛 Number of sides on the base polygon
𝑁 Number of panels in a pattern
𝑀 Mobility, or degrees-of-freedom, of a system
𝑗 Number of joints in a system
𝑓𝑖 Freedom of a joint
𝑟 Number of panels removed from a pattern
Terminology
𝑃𝑎𝑖𝑟 Two panels which are adjacent to a line of a folding set

which intersects a given circuit
𝐷𝑦𝑎𝑑 Top and bottom pairs of a folded pattern which define a

circuit
𝐶𝑖𝑟𝑐𝑢𝑖𝑡 A series of panels which are adjacent to each other, in

which each panel is visited exactly once

1. INTRODUCTION
The design of mechanisms which can be deployed to a large

surface from a small volume has been a goal of engineers for
decades. This application is particularly important to spacecraft.
Because sending material to space is so costly relative to terres-
trial endeavours, each mission typically has only the equipment
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FIGURE 1: DESIGN METHODOLOGIES. A) “BOTTOM-UP" B) “TOP-
DOWN".

required for its specific purpose. The performance of many types
of mission-critical equipment is proportional to the amount of
surface area that equipment has, such as the power generated by
solar panels, the optical capability of telescope arrays, and sig-
nal transfer capability of RF antennas. For this reason, many
spacecraft incorporate deployable arrays so they can maximize
the area of these components in the limited space available on
launch, and an important focus of design has become increasing
a spacecraft’s ratio of deployed surface area to stowed volume to
get the largest deployed array from the smallest launch payload.
Typically, deployable structures are made out of interlinking pan-
els that fold to a small volume before launch and can be deployed
to a larger surface. This has led many to turn to the application of
origami and kirigami (introducing cuts into an origami pattern)
to aid in the folding and compaction of these arrays.

1.1 Design Methodologies
A common design process using origami begins with a can-

didate pattern, which is then thickened from the original paper
model using a thickness accommodation technique[1], as de-
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scribed by Bolanos et al.[2]. The same origami pattern may re-
sult in drastically different designs when incorporating different
thickness accommodation patterns, which can make evaluating
the final shape of these design more challenging. This “Bottom-
Up" process results in various mechanical systems, with varying
shapes, degrees of stowed volume efficiency, and deployed area
efficiency, as shown in Fig.1 (a). This work builds on a method
of a “Top-Down" design approach using Hamiltonian circuits,
which allows a designer to choose a final deployed shape and as-
pect ratio, and then determine a corresponding kirigami pattern,
as shown in Fig.1 (b). This approach results in a high deployed
area efficiency and stowed volume efficiency by incorporating the
hinge-shift thickness accommodation technique. This work also
utilizes research done by Yang et al[3–5] to explore the capability
of the Hamiltonian circuit method to fold identical thick panels.
Other work has explored the design of single degree-of-freedom
systems using this methodology such as those described in Yang
et al.[6] and Yang et al.[7]. This work will not consider design
for a single degree-of-freedom, however, future work could use
those concepts to further constrain the designs explored in this
work to reduce them even further. Figure1 shows an overview of
how each of these design methods works. It should be especially
noted how the “Bottom-Up" method results in various deployed
shapes which may or may not align with the origami pattern
shape originally chosen by the designer. This is contrasted with
the “Top-Down" method, in which a kirigami pattern is created
for a final shape which can be precisely known beforehand and
can align very closely with the desired deployed shape which is
chosen by the designer.

This method allows designers the ability to tailor a shape to
their specific needs and use-case, as well as providing a robust
thickness accommodation method which results in 75% to 100%
stowed volume efficiency, depending on the polygon chosen for
the base grid. Examples of patterns created with square-based
and hexagon-based grids are shown in Fig.2, with the deployed
pattern shown on top and the compactly stowed pattern shown on
bottom.

This work will review the methods which have been devel-
oped by various authors to create novel origami patterns using
Hamiltonian Circuits, discuss techniques for modifying and im-
proving the behavior and performance of kirigami patterns cre-
ated using this method, and then show an example application of
this method for creating novel patterns for a particular use case.

2. BACKGROUND
The basis of creating a Hamiltonian circuit was first described

by the mathematician William Rowan Hamilton in 1843 when
he discovered the system of quaternions, which extend complex
numbers to three-dimensional space that can be used in describ-
ing certain mechanics [8]. While the theory underlying these
principles are thorough and rigorous, the principles themselves
allow for simplified applications, such as creating a Hamiltonian
circuit. A Hamiltonian circuit (sometimes referred to as a Hamil-
tonian path or chain), is a concept used in graph theory which
connects a series of adjacent points by starting and ending on the
same point and visiting each point exactly one time. This concept
has been used in computer science applications which deal with

FIGURE 2: SCALE COMPARISON OF PROTOTYPES OF THE 32
PANEL SQUARE PATTERN (LEFT) AND THE 19 PANEL HEXAGON
PATTERN (RIGHT) SHOWN DEPLOYED ON THE TOP AND STOWED
ON THE BOTTOM.

multiple potential solutions, such as planning routes, scheduling
tasks, and designing optimal computational sequences. However,
for many of these applications the Hamiltonian circuit method is
non-ideal as it is NP-complete, meaning that it may be impossi-
ble to solve in polynomial time. The use of Hamiltonian circuits
for creating folding circuits in kirigami designs was proposed by
Yang et al. [5] for the application of folding rigid panels with
uniform thickness. They demonstrated the ability of Hamiltonian
circuits to help in the design of the placement of revolute joints
throughout a grid of uniform polygons, such that the grid could
be folded up and stowed compactly.

The general method of using Hamiltonian circuits to design
a kirigami folding pattern is as follows. The designer begins with
a grid of uniform polygons, which represent a deployed pattern of
individual uniform panels. A desired deployed shape is chosen
and imposed on the grid, leaving only the panels required to
create the shape. A closed circuit is then found which visits each
panel exactly one time. This circuit is then used to determine cut
and fold locations within the pattern. This process is shown in
Fig.3 as applied to producing an arbitrary pattern, representing
the ability of this method to produce unique, unconstrained, and
versatile resulting shapes. Determining the folding sequence for
the chosen pattern is more difficult and will be detailed hereafter.

A major consideration when creating a pattern is that the
pattern should contain an even number of panels. This is because
the folding is dependent on a sequence of mountain-valley folds,
and patterns with an uneven number of panels would result in
folds that did not align at the ends of the circuit. Methods for
developing patterns with an odd number of panels are discussed
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FIGURE 3: EXAMPLE ORIGAMI PATTERN SELECTION USING
HAMILTONIAN CIRCUITS. NOTE THAT AN UNUSUAL PATTERN
WAS CHOSEN TO ILLUSTRATE HOW A CIRCUIT MAY CONSIST OF
A GROUP OF ANY GRID CELLS. A) INITIAL GRID OF HEXAGONS.
B) HAMILTONIAN CIRCUIT DRAWN ONTO GRID. B) ORIGAMI PAT-
TERN EXTRACTED FROM GRID.

FIGURE 4: REFLECTION SEQUENCE USED TO FIND VALID FOLD
GROUPS.

FIGURE 5: UNIQUE FOLD GROUPS FOR SELECTED ORIGAMI PAT-
TERN. NOTE THAT BECAUSE THE PRINCIPAL POLYGON WAS SIX
SIDED, THERE ARE SIX UNIQUE FOLD GROUPS.

in Section 5.2. Further considerations for choosing a base grid
and resulting pattern will be discussed throughout this work.

It should be noted that combinations of varying polygons
may also be used, although it is generally more complicated to
illustrate; however, a pattern using both squares and triangles

(a) (b)

FIGURE 6: FIX THIS FIGURE....RED IS WRONG ON BOTTOM LEFT
AND IT MAY BE TOO CONFUSING. ALL VALID FOLDING GROUPS
FOR SELECTED ORIGAMI PATTERN. A) FINAL FOLDING DYADS,
I.E. CIRCUIT GROUP ELEMENTS THAT INTERSECT HAMILTONIAN
CIRCUIT. B) COLOR CHART SHOWING FOLDING GROUPS. ALL
DYADS OF HEXAGONS WITH IDENTICAL COLORS ARE VALID
FOLDING COMBINATIONS WITH ANY OTHER DYAD OF THE SAME
COLOR. NOTE THAT TWO GROUPS, PURPLE AND YELLOW, HAVE
ONLY ONE DYAD IN THEIR GROUP, MEANING THAT THEY WILL
NOT RESULT IN A VALID FOLDING SEQUENCE.

will be shown in Section 6. Additionally, the polygon chosen for
the base grid will determine the maximum volumetric stowage
efficiency, as different shapes are able to fill a cuboid volume
differently.

3. CREATING SIMPLE PATTERNS
As explained before, creating a Hamiltonian circuit is an

NP-complex problem, and no valid solution is guaranteed for an
arbitrary set of points, however, by constraining the points to a
predetermined grid of identical polygons, the number of solutions
increases, even becoming exponentially related to the number of
panels in the chosen pattern, or 𝑁 . The pattern created will
also have a folding possibilities proportional to the number of
sides on the polygon chosen, or 𝑛, meaning that patterns based
on triangles will have three possible folding solutions, and so on.
These factors combine to create a large design space to work with,
as any unique pattern will generally have multiple viable circuits,
and each circuit will have 𝑛 possible folding sets.

Each folding set will result in a pair of panels on the top
and a pair of panels on the bottom, with all other panels folded
in between these two pairs. To find valid folding sets, a dyad of
pairs which correspond to each other must first be found.

To find the folding sets and corresponding pairs which may
fold with each other for each pattern\circuit combination, an initial
fold line is chosen from the lines which intersect the circuit within
the pattern. This line is then reflected over the subsequent fold
lines in the Hamiltonian circuit found. This process is repeated
until the current reflected line returns to the original fold line,
as shown applied to an arbitrary pattern\circuit combination in
Fig.4. This process gives both lines on the pattern that intersect
with the circuit and are used as lines along which the pattern
is folded, and lines which do not intersect with the pattern and
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used as lines on which the pattern will be cut. In Fig. 4, lines
which result in cut lines are shown as dashed, and lines which
result in fold lines are shown as solid lines. Panels adjacent to
fold lines comprise a pair of a fold group. If the reflected line
does not return to the original fold line after traversing the circuit,
the circuit will not fold rigidly and may not be used to fold the
thickened pattern. It should be noted that the circuit may be
followed in either the clockwise or counter clockwise direction,
as both will yield the same resulting pairs and cut lines.

This process is repeated 𝑛 times, with the initial fold line for
each folding set being chosen from the next line intersecting with
the circuit which has not been included in a previous folding set.
These fold groups may result in just one line which intersects
the circuit, in which case they will not include a dyad of pairs
and will not be able to fold. It can also be noted that several fold
groups may share resulting cut lines during the reflection process;
however, they are not part of the same fold groups because they
result from reflections along different circuit lines and do not
result in any interference with each other. Fig.5 shows how
this process is repeated for each of the folding sets, and Fig.6
shows the final sets which intersect the folding joints on the
pattern. Note that each color represents a unique folding set, with
pairs connected by like colors representing valid dyads. When
using patterns based on square grids, the same method is used;
however, a simplified method for finding pairs can be used. This
is explained and shown in Appendix 9.

Once the folding sets have been found, any pairs within the
set may be used as a top or bottom dyad, as long as there is at
least one other dyad contained within the set. For example, if
there are 3 pairs found within a set, any two of them may be used
to create the top and bottom dyads, with all other panels folded
in between them.

To compactly stow a pattern with the highest stowage effi-
ciency, a pattern should have an equal number of panels in both
the clockwise and counter-clockwise directions between the dyad
of pairs, which will result in each column of the folded pattern
having an equal number of panels. This is simple to determine,
as the number of panels between each dyad can be counted, and
the dyads with an even number of panels can be favored. In the
case illustrated in Fig.6, the combination given by the top blue
pair and the leftmost blue pair is only valid dyad of pairs which
meets this criteria and would result in a perfectly compact stowed
pattern. Other considerations will be discussed in Section 6 and
will be shown applied to specific patterns.

4. PREDICTING FOLDING VALIDITY (MATH)

MATH DEPARTMENT CONTENT HERE

5. ADDITIONAL TECHNIQUES

There are several additional techniques which can be used to
modify the performance and behavior of patterns designed using
Hamiltonian circuits. These include tessellation, merging panels,
and incorporating open loops, and additional techniques are sure
to be discovered when applied to new use cases.

(a) (b)

FIGURE 7: TEMPORARY FIGURE. A HEXAGONAL PATTERN IS
USED TO ILLUSTRATE HOW THIS WORKS WITH ANYTHING. IT
WOULD BE EASIER FOR SQUARES.

5.1 Tessellation
One of the benefits of patterns based on standard panels is that

they can be easily modified and expanded. This allows for con-
venient tessellation of multiple patterns to produce large arrays
over time from smaller sections. Yang et al. [6] demonstrated this
concept using Resch patterns as a basis for folding thick-origami
patterns, and Yang et al. [7] showed how clever tessellation can
be used to reduce the degrees-of-freedom of patterns designed
with Hamiltonian circuits. Facilitated tessellation is a property
of these types of patterns and makes them a compelling candi-
date for future work in creating large arrays in space from the
aggregation of a group of smaller payloads. This would also al-
low for the gradual growth of space-based systems, meaning that
performance could increase with time as more units are added to
the array, delaying the effects of age and wear on a system and
increasing its lifetime.

Consider the example shown in Fig.7 as an array of solar
cells. Fig.7 (a) shows a base unit made up of a symmetrical pattern
based on hexagons, with an even number of panels between the top
and bottom dyads. One its own, this pattern is a viable candidate
that would stow panels of any uniform thickness compactly and
deploy out of a large array. Fig.7 (b) shows how multiple instances
of this base pattern can be combined to produce a larger array
with a proportional increase in performance. Note that in this
example, a hexagonal pattern is used for illustrative purposes to
highlight the benefits of using a pattern based on unit cells, as it
facilitates designs based on even more complex base polygons.
Patterns based on square or rectangular cells lend themselves to
easier folding and merging of panels, as well as easier tessellation.

5.2 Merging Panels and Incorporating Open Chains
One of the main drawbacks to the design of patterns us-

ing this methodology is that they result in long kinematic chains
with many degrees-of-freedom. This can be mitigated by merg-
ing panels which experience concurrent motion in the fold-
ing sequence, as shown in the example in Fig.15. The effect
of merging panels can be directly calculated using the Cheby-
chev–Grübler–Kutzbach criterion, which can be used to find the
mobility of both simple open and simple closed chains. The
mobility of a simple open chain is given by

𝑀 =

𝑗∑︂
𝑖=1

( 𝑓𝑖) (1)
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(a) (b)

FIGURE 8: TEMPORARY FIGURE. CHANGE TO ILLUSTRATOR FIG-
URE.

and the mobility of a simple closed chain is given by

𝑀 =

𝑗∑︂
𝑖=1

( 𝑓𝑖 − 6) (2)

where 𝑀 is the degrees-of-freedom of the system, 𝑗 is the number
of joints, and 𝑓𝑖 is the freedom of each joint.

Merging panels should occur in every pattern in the dyad of
pairs that define the circuit, as neither panel in a pair is moving
relative to the other. The example in Fig.8 shows the difference
that merging multiple panels can make to the mobility of the
system. In Fig.8 (a), the circuit imposed on the 36 panel square
pattern results in a mobility of 𝑀 = 30, which is calculated
using Eq. 2 for a single closed chain. As panels are merged,
however, the circuit becomes an closed chain connected to an
open chain. Fig.8 (b) shows this, and the resulting mobility can
be calculated as 𝑀 = 24, found by using both Eqs. 1 and 2
for each corresponding section of the new circuit. The effect of
the creation of open chains while merging panels was originally
noted by Yang et al.[3], and merging panels generally results in
lowering the overall complexity of the system despite the new
open chains.

Incorporating open chains can also be useful for achieving
geometry which may not be able to fold as a closed circuit. Single
closed-chain patterns may be impossible for a given grid due to a
variety of reasons, such as having an odd number of panels or an
even number of panels containing no pair dyads within a folding
set. Nesting combinations of both open and closed chains allows
for creation of deployed geometries which are otherwise impos-
sible. To accommodate this geometry, panels can be removed to
produce a pattern with an even number of panels, which is then
used to find a valid folding pattern. Once this pattern is found, the
removed panels can be added back to the pattern as an open chain,
as long as it is connected to one of the top or bottom pairs. This
results in a closed chain with 𝑛− 𝑟 panels and an open chain with
𝑟 + 1 panels, where 𝑟 is the number of panels which have been
removed. An example of this is apparent in hexagonal patterns
with a circular shape, such as those shown in Sections 6.4 and
6.5.

6. APPLICATIONS IN PATTERNS WITH POTENTIAL FOR
DEPLOYABLE RF ARRAYS

The design space created by the Hamiltonian circuit method-
ology is large; however, when constrained by other factors, the
design space shrinks considerably. This section will consider pat-
terns which can be used for large (5-10 meter diameter), space-
based antennas with RF applications, although other applications
may result in differing ideal geometries, such as for SmallSat ap-
plications or arrays used primarily to generate solar power. Some
constraints that this section considered were manufacturability,
practicality, and RF applications. Practicality takes into account
the total number of panels and degrees-of-freedom in the system.
Because this work considers the application of an RF antenna,
deployed areas closer to that of an inscribed circle were viewed
as more ideal. Although every application is unique, this work
considered large antenna applications and made the assumption
that the largest panel would be on the scale of 1 meter, and as such
sought to maintain a roughly 1:5-1:10 ratio between the width of
one panel and the width of the entire array. Another consideration
that was used throughout was that the pattern should use a folding
circuit that resulted in an even number of panels in each stack, as
to maximize volume efficiency, as explained in Section 2.

With each of these considerations in mind, the design space
shrinks appreciably. This work will introduce 5 patterns that
satisfy these requirements and are viable candidates for future
work on large space-based antenna designs. Trade-offs for each
option will be discussed. These designs use both square panel
and hexagonal uniform panels. The overview of each pattern with
its accompanying parameters can be seen in Fig.9, which also
includes a scale comparison of the circumscribed circle area of
the each deployed pattern, and a scale comparison of the stowed
side and top area of each pattern, with associated parameters.
Note that the pattern shown on the top row, far right of Fig.9
also uses equilateral triangles on each corner in additional to the
primarily square grid. To compare each pattern, calculations
were kept general, considering a unit panel with a length of 𝑎.

6.1 36 Panel Square Pattern
The 36 panel square pattern, shown in Fig.10, is the result

of the most basic design from the requirements. It is intuitive
and simple to draw. Additionally, there are a plethora of viable
Hamiltonian circuits that may be created with this grid, including
many that result in reduced degrees-of-freedom from the merging
of panels which have identical kinematics. This pattern results in
the highest overall area of all the patterns considered; however,
it results in a significant amount of area which is unused in RF
applications on each corner.

6.2 32 Panel Square Pattern
In exploring the 36 panel square pattern, it was found that

by reducing the diameter of the inscribed circle slightly, the four
corner panels could be removed, as shown in Fig.11. This re-
sults in an 11.76% decrease in total RF area, with an identical
11.76% decrease in the total mass and stowed volume of the an-
tenna. This configuration is preferable to the 36 panel square
pattern when mass and stowed volume are prioritized over pure
performance. This design also maintains the use of solely square
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FIGURE 9: REMAKE, INCLUDE CIRCUIT. SUMMARY OF THE KEY PARAMETERS OF ALL EXPLORED PATTERNS. NOTE THAT THEY BOTTOM
RIGHT SHOWS A SCALE COMPARISON OF THE CIRCUMSCRIBED CIRCLE AREA OF THE EACH DEPLOYED PATTERN ON THE LEFT, AND
A SCALE COMPARISON OF THE STOWED SIDE AND TOP AREA OF EACH PATTERN ON THE RIGHT, WITH ASSOCIATED PARAMETERS.
DARK BLUE CORRESPONDS WITH THE 19 PANEL HEXAGONAL PATTERN, LIGHT BLUE CORRESPONDS WITH THE 37 PANEL HEXAGONAL
PATTERN, DARK GREEN CORRESPONDS WITH THE QUASI-OCTAGON AND 32 PANEL SQUARE PATTERNS, AND LIGHT GREEN CORRE-
SPONDS WITH THE 36 PANEL SQUARE PATTERN.

FIGURE 10: 36 PANEL SQUARE PATTERN WITH ASSOCIATED PA-
RAMETERS. CIRCUMSCRIBED CIRCLE FOR RF USE SHOWN IN
LIGHT GREEN. SIDE AND TOP VIEW OF STOWED PATTERN IS
SHOWN ON RIGHT.

panels, simplifying manufacturing and the incorporation of ex-
isting components.

6.3 Quasi-Octagon Square Pattern
The benefits of the 32 panel square pattern in mass reduction

can be further improved by cutting off the outer halves of the
corner panels, as shown in Fig.12. This results in a 25% decrease
in total mass as compared to the 36 panel square pattern, while

FIGURE 11: 32 PANEL SQUARE PATTERN WITH ASSOCIATED PA-
RAMETERS. CIRCUMSCRIBED CIRCLE FOR RF USE SHOWN IN
DARK GREEN. SIDE AND TOP VIEW OF STOWED PATTERN IS
SHOWN ON RIGHT.

retaining the same 11.76% decrease in total usable RF area. This
pattern maintains the same stowed volume as the previous 32
panel square pattern and increases the number of unique panels,
but it would be preferable when mass must be minimized as much
as possible.

It should be noted that in continuing the pattern of optimiza-
tion for reduced mass, all excess which did not conform to the
circumscribed circle could be removed; however, as shown with
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FIGURE 12: QUASI-OCTAGON SQUARE PATTERN WITH ASSO-
CIATED PARAMETERS. CIRCUMSCRIBED CIRCLE FOR RF USE
SHOWN IN DARK GREEN. SIDE AND TOP VIEW OF STOWED PAT-
TERN IS SHOWN ON RIGHT.

the Quasi-Octagon pattern, the stowed volume remains the same
because the number of panels and corresponding thickness when
stowed is unchanged, and the mass gains from further material
removal would be minimal, decreasing at most by 10.24% while
increasing the manufacturing complexity of the pattern by several
unique panels. Additionally, a similar pattern could be formed
with smaller and smaller panels, allowing for more panels to be
removed from each corner as to increase the area efficiency of
the design, but such a design would be increasingly impractical,
as the number of panels required would increase exponentially.
As such, the Quasi-Octagon pattern is considered in this work to
be the most optimal version of minimizing mass, maximizing RF
area, and maintaining practicality for the purposes of manufac-
turability and deployment by modifying the initial panel shape.

6.4 19 Panel Hexagonal Pattern

When considering the RF requirement that the deployed area
would be evaluated on its conformance to a circular shape, pat-
terns based on hexagonal grids were a natural solution. Two
patterns based on hexagons were explored, one with 19 panels,
shown in Fig.13, and one with 37 panels, shown in Fig.14.

By using a grid of hexagons, which are by their nature more
circular than squares, the 19 panel pattern is able to achieve a used
area efficiency 82.74%, a 5.21% increase from the 36 panel square
and 32 panel square patterns. This pattern has as significantly
smaller overall area than other patterns, but this is due to the use
of a unit cell measurement, and as such, other metrics, such as
deployed area efficiency and stowed volume efficiency may be
considered more useful for comparison purposes.

The 19 panel hexagonal pattern also shows an interesting
consideration when using hexagonal patterns with an aspect ratio
of 1, which is that such patterns have an odd number of panels
which are unable to evenly stack in two piles. Because of this, one
panel is removed from the pattern when determining Hamiltonian
circuits, using the method described in Section 5.2.

FIGURE 13: 19 PANEL HEXAGON PATTERN WITH ASSOCIATED
PARAMETERS. CIRCUMSCRIBED CIRCLE FOR RF USE SHOWN
IN DARK BLUE. SIDE AND TOP VIEW OF STOWED PATTERN IS
SHOWN ON RIGHT. NOTE THAT BECAUSE PATTERN CONTAINS
AN ODD NUMBER OF PANELS AND MUST BE MODIFIED TO IN-
CLUDE AN OPEN CHAIN, THE RIGHT SIDE OF THE STOWED PAT-
TERN HAS ONE MORE PANEL THAN THE LEFT SIDE.

6.5 37 Panel Hexagon Pattern
The 37 panel hexagon pattern takes the benefits of the 19

panel hexagon pattern and increases the relative RF area by
adding an order to the outside of the pattern, which is shown
in Fig.14. Implementing the technique of trimming panel shapes
to reduce the mass of the system and maintain the viable RF
area as shown with the Quasi-Octagon pattern was considered,
and it was found that removing the outer half of the most unused
hexagons would increase the area efficiency of the pattern by
7.21% to a total of 88.91% while only increasing the complexity
by one unique panel. This would result in a very good used area
efficiency, second only to the Quasi-Octagon pattern. However,
this idea was overshadowed by the fact that hexagonal patterns
are much more complex to fold, and the kinematics of which
are difficult to predict and simplify. In fact, in exploring many
hexagon based patterns, very few were found to have any folding
sequences that could be simplified in any way through the merg-
ing of panels, and often were subject to a unique series of steps
involving non-adjacent panels, making if very difficult to predict
valid deployment sequences. These factors negate the benefits of
compact stowage, in that they would generally require complex
deployment mechanisms to be incorporated into the design. Be-
cause of this, hexagonal patterns were not explored further, and
it is put forward that for the application of this section, they are
not ideal candidates for deployable arrays which are low-mass,
high-area, and practical.

6.6 Comparison of Potential Patterns
When considering which pattern may be the best fit for a

given application, it is appropriate to compare the patterns based
on a variety of criteria. Deployed area and stowed volume are
often used as the most basic criteria for deployable space-based
applications, and variations of these are used in this work. Addi-
tionally, prototypes from various patterns were tested and results
will be discussed, although not all models will be shown in this
work.

Various advantages and disadvantages of each pattern have
been discussed and will be used to make determinations about
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FIGURE 14: 37 PANEL HEXAGON PATTERN WITH ASSOCIATED
PARAMETERS. CIRCUMSCRIBED CIRCLE FOR RF USE SHOWN
IN LIGHT BLUE. SIDE AND TOP VIEW OF STOWED PATTERN IS
SHOWN ON RIGHT. NOTE THAT BECAUSE PATTERN CONTAINS
AN ODD NUMBER OF PANELS AND MUST BE MODIFIED TO IN-
CLUDE AN OPEN CHAIN, THE RIGHT SIDE OF THE STOWED PAT-
TERN HAS ONE MORE PANEL THAN THE LEFT SIDE.

the feasibility and attractiveness of each design. A general theme
that was found was that patterns based on a square grid are more
likely to be able to be simplified by finding methods of concurrent
deployment between different panels to reduce the degrees-of-
freedom of the system. Contrarily, patterns based on hexagonal
grids resulted in complicated kinematics which are non-trivial
and are rarely, if ever, able to be simplified. An example prototype
of the 32 panel square pattern is shown in Fig.15 (b), with its
corresponding Hamiltonian circuit shown in Fig.15 (a). This
prototype shows an example of a simplified pattern, with the
vertically middle two columns shown with “merged" panels. An
example of the 19 panel hexagonal pattern is shown in Fig.16 (b),
with its corresponding Hamiltonian circuit shown in Fig.16 (a).

In general, this makes square-based patterns more com-
pelling candidates for design than their hexagonal counterparts.
This is especially highlighted by the Quasi-Octagon design,
which incorporates the simplicity of the square grid with an area
efficiency exceeding that of the hexagonal grids. Because the pri-
mary motivation and advantage of the hexagonal based patterns
was their area efficiency, which was superior when compared to
the 36 and 32 panel square patterns, this advantage in the Quasi-
Octagon pattern suggests that patterns based on hexagonal grids
are not worthy of further exploration for the purposes of designing
simple, large, space-based deployable arrays. Even if there were
significant stowed volume or deployed area efficiency advantages
with hexagonal patterns, the complicated nature of the resulting
kinematics alone would be enough to give any designer pause.
One of the aims of this work was to explore patterns based on
Hamiltonian circuits and justify why some patterns are good and
why some patterns are not suitable for the intended applications.
Patterns based on hexagons are too complicated, unconstrained,
and unpredictable to be of use in large applications, and there
exist other options which have the same benefits and are far better

(a) (b)

FIGURE 15: REMAKE AND USE OPEN CIRCUIT. EXAMPLE IM-
PLEMENTATION. A) VALID HAMILTONIAN CIRCUIT FOR 32 PANEL
SQUARE GRID. B) 3D PRINTED PROTOTYPE SHOWING EXAMPLE
OF MERGED PANELS TO REDUCE THE OVERALL DEGREES-OF-
FREEDOM.

(a) (b)

FIGURE 16: UPDATE AND USE OPEN CIRCUIT. EXAMPLE IMPLE-
MENTATION. NOTE THAT BECAUSE THE GRID HAS AN ODD NUM-
BER OF PANELS, ONE PANEL MUST BE CONNECTED BY A SEPA-
RATE CIRCUIT ON THE BACK AND IS NOT SHOWN IN THE HAMIL-
TONIAN CIRCUIT. A) VALID HAMILTONIAN CIRCUIT FOR 18 PANEL
HEXAGONAL GRID. B) 3D PRINTED PROTOTYPE.

suited to these uses.
One method of determining which design is the best for a

given application is to use a weighted ranking method based on
relevant design parameters and characteristics, such as stowed
volume, total mass, and deployed area efficiency. A summary
of relevant characteristics for the patterns discussed is given in
Table 1. An example of a weighted ranking system approach to
determining which pattern is best suited to the given use case is
shown in Table 2. In this example, the best pattern for each major
parameter received 2 points, the second best received 1 point,
and the worst received -1 point. While this simple example has
limitations, it is sufficient to illustrate the method. In this example,
it can be seen that several patterns, such as the 36 and 32 panel
square patterns, are the best in some categories (deployed area and
volume efficiency) but are the worst in deployed area efficiency.
The best pattern overall was found to be the Quasi-Octagon, as it
combines the best volume efficiency of the square patterns with
the best area efficiency. Another way to further examine various
patterns would be to apply a weight to each individual parameter,
such as if volume efficiency is more important than deployed area

8 Copyright © 2024 by ASME



efficiency, and future designers would be wise to consider their
needs when making a decision as to which pattern is best suited
to their application.

7. FUTURE WORK
One of the initial considerations used in this work when

exploring potential patterns was that each stack in the stowed
patterns should have the same number of panels. While this
simplifies the stowed volume, it is not strictly necessary. One of
the major benefits of using Hamiltonian circuits is that they have
a simple thickness accommodation built-in, meaning that thick
panels do not complicate the pattern implementation. This means
that patterns which have an unequal number of panels in each
stack could be utilized in other ways, such as thickening panels
in the stack with fewer panels, and incorporating electronics or
other components into them. This has the potential of increasing
the volume efficiency of the entire satellite system as a whole,
rather than just considering the antenna alone. Ideally, every
component in the satellite could be incorporated into a thick
panel with RF on the outside, and the entire system could fold
compactly and deploy as one unit. Each stowed pattern resulted in
a shape that was twice the size of each individual panel. Future
work could also modify this, and create a pattern using a grid
of “half-squares" or “half-hexagons", such that the final stowed
shape was a single unit. This would be functionally the same
process of design, and would result in twice as many panels and
degrees-of-freedom, but could result in compact geometries for
specific applications.

This work also limited its study to that of single antenna
applications. Another interesting benefit of patterns based on
Hamiltonian circuits is that they may be easily tessellated, as
discussed in Section 5.1. Future work may benefit from exploring
patterns which are especially designed to be tessellated once
deployed in space.

8. CONCLUSION
The design space created by Hamiltonian Circuits as an ori-

gin for creating novel origami patterns yields exciting results
and has immense potential for unique deployable applications.
The designs that result from this methodology have simple thick-
ness accommodation, high stowage efficiency, and predictable
deployed area efficiency. This makes them prime candidates for
future exploration and implementation, which is certain to give
promising results and functional designs.
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TABLE 1: SUMMARY OF PATTERN TRADEOFFS

Metric 36 Panel, Square 32 Panel, Square Quasi-Octagon 19 Panel, Hexagonal 37 Panel, Hexagonal

Number of Panels 36 32 32 19 37

Degrees-of-Freedom 29 25 25 19 37

𝐴𝑝𝑎𝑛𝑒𝑙 𝑎2 𝑎2 𝑎2𝑎𝑛𝑑 1
2 𝑎2 3

√
3

8 𝑎2 3
√

3
8 𝑎2

𝐴𝑡𝑜𝑡𝑎𝑙 36𝑎2 32𝑎2 28𝑎2 57
√

3
8 𝑎2≈12.34𝑎2 111

√
3

8 𝑎2≈24.03𝑎2

𝑟𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑐𝑟𝑖𝑏𝑒𝑑 3𝑎 2𝑎
√

2 2𝑎
√

2
√

52
4 𝑎

√
5

2 𝑎

𝐴𝑅𝐹 9𝜋𝑎2 8𝜋𝑎2 8𝜋𝑎2 52
16𝜋 𝑎2 25

4 𝜋 𝑎2

𝐴𝑅𝐹(#) 28.27 25.13 25.13 10.21 19.64

𝜂𝐴
𝜋
4 ≈78.54% 𝜋

4 ≈78.54% 2𝜋
7 ≈89.76% 26𝜋

57
√

3
≈82.74% 50𝜋

111
√

3
≈81.70%

Thickness stacked 18𝑡 16𝑡 16𝑡 10𝑡 19𝑡

Length 2𝑎 2𝑎 2𝑎 𝑎
√

3 𝑎
√

3

𝑉𝑠𝑡𝑜𝑤𝑒𝑑 36𝑡𝑎2 32𝑡𝑎2 32𝑡𝑎2 10
√

3𝑡𝑎2≈17.3𝑡𝑎2 19
√

3𝑡𝑎2≈32.9𝑡𝑎2

𝜂𝑉
𝜋
4 ≈78.54% 𝜋

4 ≈78.54% 𝜋
4 ≈78.54% 52𝜋

160
√

3
≈58.95% 25𝜋

76
√

3
≈59.66%

𝜂𝑐𝑢𝑏𝑜𝑖𝑑 100% 100% 100% 75% 75%

𝜂𝑝𝑎𝑛𝑒𝑙 3.54% 3.98% 3.98% 6.36% 3.31%

TABLE 2: EXAMPLE WEIGHTED RANKING METHOD FOR DETERMINING PREFERRED PATTERN

Metric 36 Panel, Square 32 Panel, Square Quasi-Octagon 19 Panel, Hexagonal 37 Panel, Hexagonal
𝑟𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑐𝑟𝑖𝑏𝑒𝑑 3 2.828 2.828 1.803 2.5
𝐴𝑅𝐹 28.27 25.13 25.13 10.21 19.64
𝜂𝐴 78.54 78.54 89.76 82.74 81.70
Thickness stacked 18 16 16 10 19
Length 2 2 2 1.732 1.732
𝑉𝑠𝑡𝑜𝑤𝑒𝑑 36 32 32 17.3 32.9
𝜂𝑉 78.54 78.54 78.54 58.95 59.66
𝜂𝑐𝑢𝑏𝑜𝑖𝑑 100 100 100 75 75
𝜂𝑝𝑎𝑛𝑒𝑙 3.54 3.98 3.98 6.36 3.31
Best (2) 2 1 2 1 0
Second best (1) 0 2 2 1 0
Worst (-1) 1 1 0 2 2
Score 3 3 6 1 -2
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9. APPENDIX I: SIMPLIFIED FOLDING MODEL FOR
SQUARE-BASED PATTERNS

Talk about and show figures for the simplified method of
folding squares. Include explanation of why it works, 90 degree
angles etc.

12 Copyright © 2024 by ASME


	Abstract
	Nomenclature
	1 Introduction
	1.1 Design Methodologies

	2 Background
	3 Creating Simple Patterns
	4 Predicting Folding Validity (Math)
	5 Additional Techniques
	5.1 Tessellation
	5.2 Merging Panels and Incorporating Open Chains

	6 Applications in Patterns with Potential for Deployable RF Arrays
	6.1 36 Panel Square Pattern
	6.2 32 Panel Square Pattern
	6.3 Quasi-Octagon Square Pattern
	6.4 19 Panel Hexagonal Pattern
	6.5 37 Panel Hexagon Pattern
	6.6 Comparison of Potential Patterns

	7 Future Work
	8 Conclusion
	Acknowledgements
	References
	9 Appendix I: Simplified Folding Model for Square-Based Patterns

